D’Isanto A, Cavuoti S, Gieseke F, Polsterer KL (2018). Return of the features – Efficient feature selection and interpretation for photometric redshifts, Astronomy & Astrophysics, 616:A97 315
Polsterer K (2017). Astroinformatics; a new discipline or business as usual?, In Astronomical Data Analysis Software an Systems XXVII (ADASS XXVII), vol. 496 of Astronomical Society of the Pacific Conference Series, Eds: Taylor, A. R. and Rosolowsky, E., Sep 2017 209
Crawford E, Norris R, Polsterer K (2016). WTF? Discovering the Unexpected in next-generation radio continuum surveys, In Astronomical Data Analysis Software an Systems XXV (ADASS XXV), vol. 496 of Astronomical Society of the Pacific Conference Series, Eds: Taylor, A. R. and Rosolowsky, E., Sep 2016 105
Polsterer K, Gieseke F (2016). Probability Density Functions for Astronomy, In Astronomical Data Analysis Software an Systems XXV (ADASS XXV), vol. 496 of Astronomical Society of the Pacific Conference Series, Eds: Taylor, A. R. and Rosolowsky, E., Sep 2016 108
Kügler S, Gianniotis N, Polsterer K (2016). An explorative approach for inspecting Kepler data, Monthly Notices of the Royal Astronomical Society, 455(4):4399–4405 102
Polsterer K, Gieseke F, Igel C, Doser B, Gianniotis N (2016). Parallelized rotation and flipping INvariant Kohonen maps (PINK) on GPUs, In European Symposium on Artificial Neural Networks (ESANN), pp. 405–410 103
Polsterer KL, Gieseke F, Igel C (2015). Automatic Galaxy Classification via Machine Learning Techniques: Parallelized Rotation/Flipping INvariant Kohonen Maps (PINK), In Astronomical Data Analysis Software an Systems XXIV (ADASS XXIV), vol. 495 of Astronomical Society of the Pacific Conference Series, p. 81, Eds: Taylor, A. R. and Rosolowsky, E., Sep 2015 34
Polsterer KL, Gieseke F, Gianniotis N, Kuegler SD (2015). Analyzing Complex and Structured Data via Unsupervised Learning Techniques, IAU General Assembly, 22:2258115, Aug 2015 32
Gianniotis N, Kügler SD, Tino P, Polsterer KL, Misra R (2015). Autoencoding Time Series for Visualisation, In European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, pp. 495-500, May 2015 31
Hoecker M, Polsterer KL, Kugler SD, Heuveline V (2015). Clustering of Complex Data-Sets Using Fractal Similarity Measures and Uncertainties, In Computational Science and Engineering (CSE), 2015 IEEE 18th International Conference on, pp. 82-91 62
2014
Polsterer KL, Gieseke F, Igel C, Goto T (2014). Improving the performance of photometric regression models via massive parallel feature selection, Astronomical Data Analysis Software and Systems XXIII, 485:425 447
Gieseke F, Polsterer K, Oancea CE, Igel C (2014). Speedy Greedy Feature Selection: Better Redshift Estimation via Massive Parallelism, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges (Belgium), 23-25 April 2014 446
2013
Heinermann J, Kramer O, Polsterer KL, Gieseke F (2013). On GPU-Based Nearest Neighbor Queries for Large-Scale Photometric Catalogs in Astronomy, In KI 2013: Advances in Artificial Intelligence, pp. 86–97, Springer Berlin Heidelberg, Berlin, Heidelberg 448
2012
Gieseke F, Polsterer K, Zinn P (2012). Photometric Redshift Estimation of Quasars: Local versus Global Regression, Astronomical Data Analysis Software and Systems XXI. Proceedings of a Conference held at Marriott Rive Gauche Conference Center, Paris, France, 6-10 November 470
2011
Assef RJ, Denney KD, Kochanek CS, Peterson BM, Kozłowski S, Ageorges N, Barrows RS, Buschkamp P, Dietrich M, Falco E, Feiz C, Gemperlein H, Germeroth A, Grier CJ, Hofmann R, Juette M, Khan R, Kilic M, Knierim V, Laun W, Lederer R, Lehmitz M, Lenzen R, Mall U, Madsen KK, Mandel H, Martini P, Mathur S, Mogren K, Mueller P, Naranjo V, Pasquali A, Polsterer K, Pogge RW, Quirrenbach A, Seifert W, Stern D, Shappee B, Storz C, Saders JV, Weiser P, Zhang D (2011). Black Hole Mass Estimates Based on C IV are Consistent with Those Based on the Balmer Lines, ApJ 742(2):93 453
Pasquali A, Bik A, Zibetti S, Ageorges N, Seifert W, Brandner W, Rix H, Jütte M, Knierim V, Buschkamp P, Feiz C, Gemperlein H, Germeroth A, Hofmann R, Laun W, Lederer R, Lehmitz M, Lenzen R, Mall U, Mandel H, Müller P, Naranjo V, Polsterer K, Quirrenbach A, Schäffner L, Storz C, Weiser P (2011). Infrared Narrowband Tomography of the Local Starburst NGC 1569 with the Large Binocular Telescope/LUCIFER., The Astronomical Journal 141(4):132 454
2004
Mandel H, Appenzeller I, Seifert W, Baumeister H, Bizenberger P, Dettmar R, Gemperlein H, Grimm B, Herbst TM, Hofmann R, Jutte M, Laun W, Lehmitz M, Ligori S, Lenzen R, Polsterer K, Rohloff R, Schuetze A, Seltmann A, Weiser P, Weisz H, Xu W (2004). LUCIFER status report, summer 2004, Ground-based Instrumentation for Astronomy,p.1208,SPIE 458
2002
Seifert W, Appenzeller I, Baumeister H, Bizenberger P, Bomans D, Dettmar R, Grimm B, Herbst T, Hofmann R, Juette M, Laun W, Lehmitz M, Lemke R, Lenzen R, Mandel H, Polsterer K, Rohloff R, Schuetze A, Seltmann A, Thatte NA, Weiser P, Xu W (2002). LUCIFER: a Multi-Mode NIR Instrument for the LBT, Instrument Design and Performance for Optical/Infrared Ground-based Telescopes,p.962,SPIE 457
We use cookies on our website. Some of them are essential, while others help us improve this site and your experience.If you are under 16 and wish to give consent to optional services, you must ask your legal guardians for permission.We use cookies and other technologies on our website. Some of them are essential, while others help us to improve this website and your experience.Personal data may be processed (e.g. IP addresses), for example for personalized ads and content or ad and content measurement.You can find more information about the use of your data in our privacy policy.You can revoke or adjust your selection at any time under Settings.
If you are under 16 and wish to give consent to optional services, you must ask your legal guardians for permission.We use cookies and other technologies on our website. Some of them are essential, while others help us to improve this website and your experience.Personal data may be processed (e.g. IP addresses), for example for personalized ads and content or ad and content measurement.You can find more information about the use of your data in our privacy policy.Here you will find an overview of all cookies used. You can give your consent to entire categories or have further information displayed and thus select only certain cookies.