Gruppenleiter Computational Statistics (CST) am HITS
Professor für Computational Statistics, Institut für Stochastik am Karlsruher Institut für Technologie (KIT)
Forschungsinteressen
Statistik und Wahrscheinlichkeitstheorie; räumliche und räumlich-zeitliche Modellierung; Theorie und Anwendung von Vorhersagen in Meteorologie, Umwelt- und Erdwissenschaften, Wirtschaft und Finanzen, etc.
Curriculum Vitae
Gruppenleiter Computational Statistics (CST), Heidelberger Institut für Theoretische Studien
Professor für Computational Statistics, Institut für Stochastik, Karlsruher Institut für Technologie
Wissenschaftlicher Direktor, Heidelberger Institut für Theoretische Studien
Professor für Statistics, University of Washington, Seattle, US
Associate Professor of Statistik, University of Washington, Seattle, US
Assistant Professor für Statistik, University of Washington, Seattle, US
Acting Assistant Professor für Statistik, University of Washington, Seattle, US
Redakteurs-Aktivitäten
Senior Editor, Annals of Applied Statistics
Guest Editor, Nonlinear Processes in Geophysics
Editor for Physical Science, Computation, Engineering and the Environment, Annals of Applied Statistics
Associate Editor, Annals of Statistics
Associate Editor, Environmentrics
Associate Editor, Weather and Forecasting
Associate Editor, Annals of Applied Statistics
Associate Editor, Journal of the Royal Statistical Society Series B: Statistical Methodology
Auszeichnungen
Fellow, European Centre for Medium-Range Weather Forecasts (ECMWF)
Fellow, American Statistical Association
Highly Cited Researcher in Mathematik für den Zeitraum von 2004-2014, Clarivate Analytics (vormals Thomson Reuters)
Read Paper (gemeinsam mit Werner Ehm, Alexander Jordan and Fabian Krüger), Royal Statistical Society, London (UK), 9 December 2015
Distinguished Achievement Medal, American Statistical Association Section on Statistics and the Environment
Outstanding Paper Award, International Institute of Forecasters
Early Career Award, National Science Foundation, US
Publikationen
Hier geht es zu meinem Google Scholar Profil
2025
2024
- Walz E, Knippertz P, Fink AH, Köhler G, Gneiting T (2024). Physics-based vs. data-driven 24-hour probabilistic forecasts of precipitation for northern tropical Africa, Monthly Weather Review, 152(9):2011–2031 1845
- Dimitriadis T, Gneiting T, Jordan AI, Vogel P (2024). Evaluating probabilistic classifiers: The triptych, International Journal of Forecasting, 40(3):1101–1122 1735
- Lopez VK, Cramer EY, Pagano R, Drake JM, O’Dea EB, Adee M, Ayer T, Chhatwal J, Dalgic OO, Ladd MA, Linas BP, Mueller PP, Xiao J, Bracher J, Castro Rivadeneira AJ, Gerding A, Gneiting T, Huang Y, Jayawardena D, Kanji AH, Le K, Mühlemann A, Niemi J, Ray EL, Stark A, Wang Y, Wattanachit N, Zorn MW, Pei S, Shaman J, Yamana TK, Tarasewicz SR, Wilson DJ, Baccam S, Gurung H, Stage S, Suchoski B, Gao L, Gu Z, Kim M, Li X, Wang G, Wang L, Wang Y, Yu S, Gardner L, Jindal S, Marshall M, Nixon K, Dent J, Hill AL, Kaminsky J, Lee EC, Lemaitre JC, Lessler J, Smith CP, Truelove S, Kinsey M, Mullany LC, Rainwater-Lovett K, Shin L, Tallaksen K, Wilson S, Karlen D, Castro L, Fairchild G, Michaud IJ, Osthus D, Bian J, Cao W, Gao Z, Lavista Ferres J, Li C, Liu T, Xie X, Zhang S, Zheng S, Chinazzi M, Davis JT, Mu K, Pastory y Piontti A, Vespignani A, Xiong X, Walraven R, Chen J, Gu Q, Wang L, Xu P, Zhang W, Zou D, Gibson GC, Sheldon D, Srivastava A, Adiga A, Hurt B, Kaur G, Lewis B, Marathe M, Peddireddy AS, Porebski P, Venkatramanan S, Wang L, Prasad PV, Walker JW, Webber AE, Slayton RB, Biggerstaff M, Reich NG, Johansson MA (2024). Challenges of COVID-19 case forecasting in the US, 2020–2021, PLOS Computational Biology, 20(5):e1011200 1843
- Walz E, Henzi A, Ziegel J, Gneiting T (2024). Easy uncertainty quantification (EasyUQ): Generating predictive distributions from single-valued model output, SIAM Review, 66(1):91–122 1782
- Brehmer JR, Gneiting T, Herrmann M, Marzocchi W, Schlather M, Strokorb K (2024). Comparative evaluation of point process forecasts, Annals of the Institute of Statistical Mathematics, 76:47–71 1692
- Arnold S, Walz E, Ziegel J, Gneiting T (2024). Decompositions of the mean continuous ranked probability score, Electronic Journal of Statistics, 18(2):4992–5044 1890
2023
- Rasheeda Satheesh A, Knippertz P, Fink AH, Walz E, Gneiting T (2023). Sources of predictability of synoptic‐scale rainfall during the West African summer monsoon, Quarterly Journal of the Royal Meteorological Society, 149(757):3721–3737 1720
- Gneiting T, Wolffram D, Resin J, Kraus K, Bracher J, Dimitriadis T, Hagenmeyer V, Jordan AI, Lerch S, Phipps K, Schienle M (2023). Model diagnostics and forecast evaluation for quantiles, Annual Review of Statistics and Its Application, 10:597–621 1549
- Gneiting T, Lerch S, Schulz B (2023). Probabilistic solar forecasting: Benchmarks, post-processing, verification, Solar Energy, 252:72–80 1571
- Gneiting T, Resin J (2023). Regression diagnostics meets forecast evaluation: Conditional calibration, reliability diagrams, and coefficient of determination, Electronic Journal of Statistics, 17(2):3226–3286 1813
2022
- Bracher J, Wolffram D, Deuschel J, Görgen K, Ketterer JL, Ullrich A, Abbott S, Barbarossa MV, Bertsimas D, Bhatia S, Bodych M, Bosse NI, Burgard JP, Castro L, Fairchild G, Fiedler J, Fuhrmann J, Funk S, Gambin A, Gogolewski K, Heyder S, Hotz T, Kheifetz Y, Kirsten H, Krueger T, Krymova E, Leithäuser N, Li ML, Meinke JH, Miasojedow B, Michaud IJ, Mohring J, Nouvellet P, Nowosielski JM, Ożański T, Radwan M, Rakowski F, Scholz M, Soni S, Srivastava A, Gneiting T, Schienle M (2022). National and subnational short-term forecasting of COVID-19 in Germany and Poland during early 2021, Communications Medicine, 2:136 1548
- Gneiting T, Walz E (2022). Receiver operating characteristic (ROC) movies, universal ROC (UROC) curves, and coefficient of predictive ability (CPA), Machine Learning, 111:2769–2797 1375
- Gneiting T, Vogel P (2022). Receiver operating characteristic (ROC) curves: Equivalences, beta model, and minimum distance estimation, Machine Learning, 111:2147–2159 1421
- Cramer EY, Ray EL, Lopez VK, Bracher J, Brennen A, Castro Rivadeneira AJ, Gerding A, Gneiting T, (282 further coauthors) , Walker JW, Slayton RB, Johansson MA, Biggerstaff M, Reich NG (2022). Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States, Proceedings of the National Academy of Sciences, 119(15):e2113561119 1475
2021
- Bracher J, Wolffram D, Gneiting T, Schienle M (2021). Vorhersagen sind schwer, vor allem die Zukunft betreffend: Kurzzeitprognosen in der Pandemie, Mitteilungen der Deutschen Mathematiker-Vereinigung, 29(4):186–190 1429
- Bracher J, Wolffram D, Deuschel J, Görgen K, Ketterer JL, Ullrich A, Abbott S, Barbarossa MV, Bertsimas D, Bhatia S, Bodych M, Bosse NI, Burgard JP, Castro L, Fairchild G, Fuhrmann J, Funk S, Gogolewski K, Gu Q, Heyder S, Hotz T, Kheifetz Y, Kirsten H, Krueger T, Krymova E, Li ML, Meinke JH, Michaud IJ, Niedzielewski K, Ożański T, Rakowski F, Scholz M, Soni S, Srivastava A, Zieliński J, Zou D, Gneiting T, Schienle M (2021). A pre-registered short-term forecasting study of COVID-19 in Germany and Poland during the second wave, Nature Communications, 12:5173 1367
- Henzi A, Ziegel JF, Gneiting T (2021). Isotonic distributional regression, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 83(5):963–993 1369
- Schmidt P, Katzfuss M, Gneiting T (2021). Interpretation of point forecasts with unknown directive, Journal of Applied Econometrics, 36(6):728–743 1370
- Brehmer JR, Gneiting T (2021). Scoring interval forecasts: Equal-tailed, shortest, and modal interval, Bernoulli, 27(3):1993–2010 1372
- Dimitriadis T, Gneiting T, Jordan AI (2021). Stable reliability diagrams for probabilistic classifiers, Proceedings of the National Academy of Sciences, 118(8):e2016191118 1374
- Bracher J, Ray EL, Gneiting T, Reich NG (2021). Evaluating epidemic forecasts in an interval format, PLOS Computational Biology, 17(2):e1008618 1406
- Vogel P, Knippertz P, Gneiting T, Fink AH, Klar M, Schlueter A (2021). Statistical forecasts for the occurrence of precipitation outperform global models over northern tropical Africa, Geophysical Research Letters, 48(3):e2020GL091022 1407
- Krüger F, Lerch S, Thorarinsdottir T, Gneiting T (2021). Predictive inference based on Markov chain Monte Carlo output, International Statistical Review, 89(2):274–301 1409
2020
2019
2018
- Gneiting T, Asher J, Carriquiry A, Davis R, Dawid AP, Efron B, Haberman S, Kou S, Newton M, Paddock S, Prewitt K, Raftery A, Stein M, Straf M (2018). Special section in memory of Stephen E. Fienberg (1942–2016) AOAS Editor-in-Chief 2013–2015, Annals of Applied Statistics, 12(2):iii–x 341
- Vogel P, Knippertz P, Fink AH, Schlueter A, Gneiting T (2018). Skill of global raw and postprocessed ensemble predictions of rainfall over northern tropical Africa, Weather and Forecasting, 33(2):369–388 344
2017
2016
- Ehm W, Gneiting T, Jordan A, Krueger F (2016). Of quantiles and expectiles: Consistent scoring functions, Choquet representations and forecast rankings (with discussion and reply), Journal of the Royal Statistical Society: Series B (Statistical Methodology), 78(3):505–562 49
- Fissler T, Ziegel JF, Gneiting T (2016). Expected shortfall is jointly elicitable with value-at-risk: Implications for backtesting, Risk Magazine, January:58–61 143
2015
2014
- Richardson D, Hemri S, Bogner K, Gneiting T, Haiden T, Pappenberger F, Scheuerer M (2014). Calibration of ECMWF forecasts, ECMWF Newsletter, 142:12–16 56
- Gneiting T, Katzfuss M (2014). Probabilistic forecasting, Annual Review of Statistics and Its Application, 1(1):125–151 1395
- Scheuerer M, Gneiting T (2014). Evaluating predictive performance, In Mathematics of Planet Earth, Lecture Notes in Earth System Sciences, Eds: Pardo-Igúzquiza E, Guardiola-Albert C, Heredia J, Moreno-Merino L, Durán J, Vargas-Guzmán J, Springer, Berlin, Heidelberg, pp. 15–18 1396
- Ziegel JF, Gneiting T (2014). Copula calibration, Electronic Journal of Statistics, 8(2):2619–2638 1397
- Dueck J, Edelmann D, Gneiting T, Richards D (2014). The affinely invariant distance correlation, Bernoulli, 20(4):2305–2330 1411
2013
- Schefzik R, Thorarinsdottir TL, Gneiting T (2013). Uncertainty quantification in complex simulation models using ensemble copula coupling, Statistical Science, 28(4):616–640 1398
- Sloughter JM, Gneiting T, Raftery AE (2013). Probabilistic wind vector forecasting using ensembles and Bayesian model averaging, Monthly Weather Review, 141(6):2107–2119 1400
- Gneiting T, Ranjan R (2013). Combining predictive distributions, Electronic Journal of Statistics, 7:1747–1782 1401
- Thorarinsdottir TL, Gneiting T, Gissibl N (2013). Using proper divergence functions to evaluate climate models, SIAM/ASA Journal on Uncertainty Quantification,1(1):522–534 1402
- Grant K, Gneiting T (2013). Consistent scoring functions for quantiles, In From Probability to Statistics and Back: High-Dimensional Models and Processes — A Festschrift in Honor of Jon A. Wellner, Eds: Banerjee M, Bunea F, Huang J, Koltchinskii V, Maathuis MH, Institute of Mathematical Statistics, pp. 163–173 1403
- Gneiting T (2013). Strictly and non-strictly positive definite functions on spheres, Bernoulli,19(4):1327–1349 1412