How can a bird sense magnetic fields, how does our ear detect sound waves, how does our bone feel gravitation? It is the physics of individual molecules that dictate these and many other processes in life.
This course introduces computational methods to study the structure, dynamics and mechanics of biomolecules at different scales. It aims at endowing the students with an active understanding of the principles, the capacity and limitations of different molecular simulation techniques, including Monte Carlo, Molecular Dynamics, Brownian Dynamics and multi-scale simulations with an emphasis on Molecular Dynamics simulations. The course comprises alternating lectures and hands-on computer tutorials of which the latter are meant to directly demonstrate the principles of running and analyzing computer simulations of biological matter.
Lectures will be given by Prof. Frauke Gräter and Prof. Rebecca Wade. The lectures will be targeted to advanced Bachelor, Master and interested PhD students and will be complemented by hands-on computer sessions in which the students will have the opportunity to run molecular simulations supervised by Ms. Fabian Kutzki, Dr. Fan Jin, Dr. Kashif Sadiq and Dr. Prajwal Nandekar.
Lectures and hands-on computer tutorials will take place in room number 3.103 in Mathematikon. The lectures/tutorials will take place once a week, on Tuesdays, 14-15.30 pm (2 SWS).
Date | L/P | Topic | Lecturer | |
16.10. | L | Introduction into Mechanobiology, MD | FG | |
23.10. | L | Monte Carlo, MD and force fields | FG | |
30.10. | P | MD: argon | FG | |
6.11. | P | MD: ubiquitin | FG | |
13.11. | L | MD and force probe MD | FG | |
20.11. | P | MD: ubiquitin | FG | |
27.11. | L | Calculating free energies in MD | FG | |
4.12. | P | force-probe MD: ubiquitin | FG | |
11.12. | L | Coarse-grained and multi-scale MD | FG | |
18.12. | L/P | finite element analysis DNA | FG | assignment |
8.1. | L | Continuum electrostatics | RW | |
15.1. | P | Continuum electrostatics | RW | |
22.1. | L | BD | RW | |
29.1. | P | BD | RW | |
5.2. | Question & Answers | FG |
L – lecture, P – practical, FG – Frauke Gräter, RW – Rebecca Wade
www.gromacs.org open source molecular simulation software used in the tutorial, for both atomistic MD and coarse-grained Brownian dynamics simulations. Comes with an extensive manual, which includes the principles of MD simulations and biomolecular force fields.
http://cando-dna-origami.org/ web-based finite element software for mechanics/dynamics of DNA sculptures
HITS, the Heidelberg Institute for Theoretical Studies, was established in 2010 by physicist and SAP co-founder Klaus Tschira (1940-2015) and the Klaus Tschira Foundation as a private, non-profit research institute. HITS conducts basic research in the natural, mathematical, and computer sciences. Major research directions include complex simulations across scales, making sense of data, and enabling science via computational research. Application areas range from molecular biology to astrophysics. An essential characteristic of the Institute is interdisciplinarity, implemented in numerous cross-group and cross-disciplinary projects. The base funding of HITS is provided by the Klaus Tschira Foundation.
This page is only available in English